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It is shown that the interplay between chemical reactions and criticality gives 
rise to some novel phenomena manifested both in a change of critical indices 
and in some pecularities in the course of chemical reactions. To cite a single 
example, one can mention the existence of a single point on the hypersurface of 
the diffusion instability where the slowing down of chemical reactions occurs. 
The requirements for phase separation in reactive systems are illustrated on 
simple models of a nonelectrolytic binary mixture and a ternary mixture including 
electrolytes. The general criterion for the existence of azeotropic points and the 
upper (lower) critical solution temperatures in reactive systems is formulated. 
The influence of a chemical reaction on the form of the solubility curve near the 
melting point in a binary and a dilute ternary mixture is analyzed in detail. A 
new general approach is formulated to the decay of metastable state in reactive 
systems. Finally, some possible experimental verifications are considered. 
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1. I N T R O D U C T I O N  

This  r ev iew deals  wi th  the  coex i s t ence  of  different  phases ,  espec ia l ly  nea r  

the cr i t ical  po in t s  in sys tems in wh ich  chemica l  r eac t i ons  occur .  A chemica l  

r eac t i on  c lear ly  leads  to the  exis tence  of  a n u m b e r  o f  c o m p o n e n t s  in a 

system. M a n y - c o m p o n e n t  r eac t ive  systems,  and  espec ia l ly  fluids, a re  the  

subjec t  of  the  inves t iga t ion ,  wh ich  is r es t r i c ted  to the  case o f  c losed  

systems,  as d i s t inc t  f r o m  the  o p e n  sys tems  where  m a n y  pecul ia r i t i es  in 

chemica l  r eac t ions  a re  well  k n o w n / 1 )  
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The approach is physicochemical in the sense that physical forces of 
interaction as well as chemical reactions are considered. However, the 
division of the forces into "physical" and "chemical" is relative in itself. It 
is convenient (2) to distinguish between strong attractive (chemical) forces 
leading to the formation of chemical species, and weak attractive (physical) 
forces, usually called van der Waals forces. It should be remembered, there- 
fore, that when one considers the "ideal" ternary mixture A, B, and AnB m 
the strong bonding interactions between A and B atoms have been already 
taken into account via the formation of chemical complexes A, Bin, and the 
term "ideal" only means that there are no "physical" forces. The growth of 
clusters in a metastable state is an example of an unclear distinction 
between physical and chemical forces. An arbitrary decision has to be made 
in numerical simulations in order to decide whether a given particle 
belongs to a "chemical" cluster. 

The usefulness of a "chemical" approach to physical problems should 
be noted. I have considered (3) the mean field theopry of the phase 
transition in the Ising lattice of nonstoichometric AB alloys. The tem- 
perature dependence of the long- and short-range order parameters was 
found from "the law of mass action" for two appropriately chosen 
"chemical reactions." The latter are the exchange of position of one atom 
A from one sublattice and one atom B from the second sublattice. The 
change of the interaction energy for such transitions when both atoms are 
or are not the nearest neighbors determines the "constants of chemical 
reactions." 

Such an approach allows one to avoid the calculation of entropy 
provided that one is interested only in the value of the critical temperature 
rather than in the behavior of all thermodynamic quantities, which are 
determined by the same classical critical indices in all versions of the mean 
field theory. 

This "chemical" method, in which a given atom with all its z neighbors 
is considered as the basic group, gives better results than the Bragg- 
Williams or the Bethe-Peierls methods. In the Bragg-Williams method, 
each atom is exposed to the (self-consistent) average influence of all other 
atoms, while in the Bethe method a pair of adjacent atoms is considered as 
a basic group. 

Many other examples of the "chemical" approach to "physical" 
phenomena can be found in textbooks on chemical thermodynamics. For  
example, the typical "physical" process of diffusion can be considered 
(ref. 4, Chapter 15) as a "chemical reaction" in which some amount of sub- 
stance A passes from the volume element a to b while a different amount 
of B passes from b to a. 

While the borderline between chemical and physical forces is arbitrary, 
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one usually considers first the "physical" forces in the equation of state, and 
after that the "chemical" forces in the law of mass action based on the 
nonideal equation of state. I follow this approach below. 

This review is written by a physicist for physicists. My aim is therefore 
to indicate some new phenomena arising from the mutual influence of 
criticality and chemistry, rather than to perform the numerical calculations 
for complicated systems that are so important for practical engineering 
purposes. Therefore, I consider everywhere the simple case of a single 
chemical reaction and the simplest equations of state. In a few cases it is 
enough to consider the ideal equation of state: the azeotropic points in 
reactive systems exist even for ideal substances. (5) However, the ideal 
systems do not show phase separation even with chemical reactions. Only 
for n ~ oo does the association reaction A,, ~ nA result in phase separation 
even for ideal substances. (6~ Therefore, I use the simplest models of strictly 
regular solutions for neutral systems, and the Debye-Hiickel approxima- 
tion for solutions of electrolytes. 

In the wake of the impressive advance in the study of critical 
phenomena, it seems that the influence of criticality on chemical reaction 
and vice versa has not received widespread atention. I hope that this 
interesting subject will attract more attention in the future. 

2. GENERAL STABILITY C O N D I T I O N S .  
C H E M I C A L  INSTABIL ITY 

The thermodynamic state of an n-component one-phase system is 
determined by n +  1 variables, say the temperature T and the chemical 
potentials of each component /~i ( i=  1, 2,..., n). The free energy ~b as a 
function of all these "field" variables has the following form: 

~ = ~(r ,  ~i,..., ~,,) (1) 

However, for a reactive system the chemical potentials are not independent. 
Thus, for the reaction ~ 1 v~Ai = O, where Ai are the chemical symbols of 
the reagents and the vi are positive or negative integers, one has an addi- 
tional constraint on ~i, namely, according to the law of mass action, (4~ in 
equilibrium 

A - = -  ~ vi/~/=0 (2) 
i = l  

The unconstrained free energy ~ can be written as 

~(T,~, . . . ,~)=~(T,  #~ ..... ~ ) +  ~ ~ v~,., (3) 
i = l  
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where ~ is a Lagrange multiplier. By differentiating Eq. (3) with respect to 
#i, one obtains the particle number densities 

ni = n o + ~vi (4) 

Equation (4) means that for a given system (with initial n ~ the change in 
ni is completely determined by the extent ~ of the reaction. The latter quan- 
tity defines, for given P and T, the trajectory of all possible thermodynamic 
states of a system in the n-dimensional phase space. The thermodynamic 
behavior near the critical point for given n o has been analyzed recently. (v's) 

However, the complete analysis of stability at given T and P requires 
o and ~ in a consideration of all possible changes of ni coming both from n~ 

Eq. (4). In multicomponent systems the stability with respect to diffusion is 
broken first, before the thermal or the mechanical stability. In terms of the 
Gibbs free energy G(T, P, n~ ..... n,) the condition for diffusion stability for 
given P and T has the form 

dZG= ~ dn~#o, dnj>O; ~ i j ~ , l l i / ~ n j  (5) 
ij 

One can easily show (4) that the matrix /~ is semipositive, i.e., the 
determinant of this matrix kq/~jlL vanishes and the rank of #~j is equal to 
n -  1 and all but one eigenvalue of Yo are positive. Let N ~ be the eigen- 
vector corresponding to zero eigenvalues: 

Z/~uNj ~  (6t 
J 

Equations (6), which are the Gibbs-Duhem relations, have a simple 
physical meaning of invariance with respect to proportional change of all 
particle numbers. On substituting (4) in (5), one obtains 

d 2 G = ~  [dn~#~jdns+ 2dniyuvjd~ +v~y~jvj(d~)2]>O (7) 
i,j 

The form q -  ~ , s  xi#~Jxs vanishes only when LI/~0ll = 0. (The opposite, 
however, is not true; namely, for Jq#~jll = 0, q may remain positive.) There- 
fore, the existence of a chemical reaction does not change the stability con- 
ditions. The equivalence of the stability conditions with respect to chemical 
changes and those with respect to diffusion becomes evident when one 
considers (4) them as results of homogeneous and nonhomogeneous pertur- 
bations of an initially homogeneous system. 

On the critical hypersurface the expression (5) vanishes, i.e., new zero 
eigenvalues of/~0 appear which correspond to some eigenvector Nj such 
that 

Z  ,JNJ = o (s )  
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Among all points on the critical hypersurface, those are worthy of 
notice where not only the condition (5) is violated, but also the sum 
~, j  v~go.v j vanishes. I shall call tttem the "chemical" instability points. The 
latter name is justified in that near these points and only near them does 
the slowing down of chemical reactions occur. In fact, one can show in dif- 
ferent ways that the sum ~ , j  v~#o.v j, which, according to Eq. (7), is equal 
to (dA/d~)eq, determines the slowing down. The affinity A and the 
derivative d~/dt are two conjugate parameters in the entropy production; 
both vanish in equilibrium and therefore, near equililbrium, one can 
assume an Onsager-type relation: 

d~/dt=ZAmL(dA/d~)(~-~q)=L~viktijvj(~-~eq ) (9) 
i , j  

Mode-coupling analysis shows ~8~ that the Onsager coefficient L has no 
singularity at the critical point. Therefore, the slowing down will take place 
when 

~ vi~o.v:=O (10) 
i , j  

The same results can be obtained from the usual kinetic relations for 
the rate of chemical reactions. (9~ For the chemical reaction 

k l 

Z v,A,= Z v~A) 
i = l  j = l  

the observe rate of reaction r is the difference between the forward and 
backward processes, 

r= e-,:=,'+ c ? . . .  k -  r c?  (11) 

where r+ and r_ are microscopically determined rate coefficients for the 
forward and backward reactions, while Ci are the concentrations (or 
fugacities) of the ith species in an ideal (or nonideal) solution. Using the 
definition of the chemical potentials lti=/~0 + RTln Ct and the fact that ~4) 

r+/r =exp i_ vii ~~ i Vjl~~ / R 
j =  t 

one can rewrite Eq. (I1) as 

r = r + C ~  1 v~ vl ~.1. ~k - . . C  k [ 1 - ( r _ / r + ) ( C v l  ~...C~7C, ..C k )] 

= r+ C~ '~ v~ -- -.-C~I-1 exp(--A/RT)=-LRT[1-exp(-A/RT)] (12) 
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One concludes from Eq. (12) that the rate of reaction r which is 
proportional to d~/dt  is, in general, a nonlinear function of A. However, in 
equilibrium A =0,  and for small enough deviations from equilibrium 
A / R T ~  1 and Eq. (12) reduces to the Onsager relation (9). 

Let us consider when the condition (10) for the critical slowing down 
is satisfied. Equations (6) and (8) mean that the slowing down (10) will 
take place if and only if 

vi = c~Si + f lU ~ (13) 

where a and /~ are arbitrary constants. The important formula (13) has 
been obtained by Patashinsky et al. (~~ 

There are n - 2  constraints (13) equal to the rank of the matrix #ij on 
the critical hypersurface. Together with two critical conditions, they define 
n conditions on n +  1 independent variables. Thereby only one free 
parameter is left, which will be fixed by the law of mass action (2). There- 
fore, the slowing down may appear only at an isolated point on the critical 
hypersurface provided that all constraints are compatible. Each chemical 
reaction decreases by one the dimension of the critical hypersurface. In the 
case of an n-component system with n - 1 chemical reactions (e.g., a binary 
mixture with a single chemical reaction), the only existing critical point will 
be where slowing down occurs. The rate of the chemical reaction near this 
isolated critical point will be proportional to [ ( T -  T c ) / T , ]  ~, where 7 is the 
susceptibility critical index. 

For an n-component mixture with the number of chemical reactions 
less than n -  1, the chemical instability point will be an iso,lated point on 
the critical hypersurface, which makes the experimental verification more 
complicated than was expected. (*) However, in addition to binary mixture 
with a single chemical reaction, the slowing down is very probable ~~ in 
reactions in multicomponent systems involving the separation of weakly- 
dissolved substances from a solvent. 

3. THE EFFECT OF CRITICALITY ON C H E M I S T R Y  

3.1. Critical S lowing D o w n  of Chemical  Reactions 

Our analysis of the slowing down based on Eq. (9) is not complete 
for the following reason. Only homogeneous changes of the extent of 
reaction ~ are allowed by (9). If, however, a system is large enough, the 
K-dependent changes connected with the sound, heat, or diffusion modes 
become more important. (13) Indeed, the relaxation rates of the latter 
processes will become smaller (for some small wave numbers K) than the 
fixed K-independent rate of the chemical reaction. 
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The general mean-field approach which goes back to Van Hove ( ~  is 
the straightforward generalization of Eq. (9). On the left-hand side of the 
equation, instead of ~, the column matrix of the "density"-type variables x 
(density, concentrations, entropy, etc.) apprars, and instead of A, their 
conjugate "fields" X (pressure, chemical potentials, temperature, etc.), 
which are connected by the matrix of Onsager coefficients L(K), i.e., 

icox(K, 6o) = L(K) X(K, co) (14) 

The field variables X are connected, in turn, with the density variables 
x by the susceptibility matrix Z l, i.e., X(K, CO)=z(K) ~x(K, co) (the 
constituent equation). Finally, 

icox(K, co)= L(K) Z-ix(K, co)= Mx(K, co) (15) 

The matrix M = L z-1 is the hydrodynamic matrix. One has, therefore, 
to write the hydrodynamic equations for a reactive system. I consider here 
the linearized equations for binary mixtures, leaving the analysis of the 
nonlinearities to Section 4.2. 

The linearized hydrodynamic equations can be obtained as a 
straightforward generalization of the equation of motion of a nonreactive 
binary mixture. We may choose the mass fraction of one component as the 
extent of reaction s and write 

Op/Ol+pg'v=O (16) 

p 8V" v/Ot = - V 2 p +  (~r/+ r/~) V 2 V ' v  (17) 

8~/Ot = D[V2{ + (kr/T) V2T+ (kp/P) V2p] + LA (18) 

8S/8t = (2/p T) VZT+ (DkT/T)(SA/O~)p. r[V2~ + (kelP) VZP] 

+ (~?S/8~)e, r O[V 2s + (kp/P) V2P + (kT/T) V2T] (19) 

Here p, v, r/, qv, D, 2, and k r  are the density, velocity field, shear and bulk 
viscosities, diffusion constant [D=~(3A/O~)e,v],  heat conductivity, and 
the thermodiffusion constant, respectively. The quantity kelP is thermo- 
dynamic and equals (SA/OP)r,e/(aA/O~)r.p. 

Notice that the chemistry term LA appears only in (18) and not in 
(19). The reason is that the chemical reaction contributes only quadratic 
terms to the entropy production. (4) Since A vanishes at equilibrium, we 
expand A in P, T, and ~.: 

LA =L(3A/8~)p, rb~ + L(3A/3T)~.p3T + L(~A/3P)~,T3P (20) 
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By using thermodynamic identities, we can write Eq. (20) in the form 

LA = -(1/~T,p)[6~ - (O~/OT)e,.~ ~ T -  (O~/~P)~,A 6P] (21) 

where ~ r, e - (1 /L) (0A/~)  ~1 e. 
The system of equations (16)-(19) contains four hydrodynamic degrees 

of freedom from the existing six variables because the transverse com- 
ponents of the velocity are not coupled with other variables. Moreover, the 
sound modes connected with density and longitudinal velocity are much 
faster than the nonpropagating diffusive and reacting modes. Therefore, 
two more equations of (16)-(19) can be eliminated, leaving only two equa- 
tions, (18) and (19). What remains is a 2 x 2 matrix whose eigenvalues can 
easily be calculated. (s) I use here the simple physical analysis performed by 
Milner and Martin. (~3~ 

One can see from Eq. (18) that the relaxation of ~ comes through 
chemical processes (with characteristic time v away from the critical point), 
through diffusion [for which (DK2) -1 is the typical relaxation time], and 
through thermal diffusion. In the latter case the characteristic time 
is (2K2) -1, where 2 = (krD/Ce.~)(OAfi?~)p,r and the concentration- 
temperature coupling is treated by Eqs. (18) and (19). Let us defined now 
two characteristic lengths (inverse wave numbers) by K52=D~ and 
K~ 2 = 2z, where generally KH ~ >> Kc 1. 

The possible values of the wave numbers fall into three intervals: 
K <  KH, KH < K <  Kc, and K >  Kc. In the first interval the chemical reac- 
tion is more rapid than both heat conduction and particle diffusion, while 
in the third interval diffusion dominates the chemical relaxation. Only for 
the processes with wave numbers located in the "window" between KH and 
K~. is the relaxation dominated by chemistry. For  the typical values of 
2 = 0.1 cm2/sec and D = 10 -5 cm2/sec and for a reaction rate r -1 --- 105 Hz 
we have K n =  103cm -1 and Kc= 105cm -~. Therefore, light-scattering 
experiments at different temperatures in the vicinity of the critical tem- 
perature should evidence the slowing down of chemical reactions near 
the critical points. According to theoretical "mean-field" predictions, (8'13) 
the slowing down is governed by the "strong" critical index 7, while the 
renormalization group analysis (see Section 4.2) leads to small corrections 
to 7. 

Notice that the "slowing down of the chemical reaction" does not 
imply that the forward or backward reaction is slowed down. It is the 
measured rate, which is the net difference between the forward and back- 
ward reactions, which is affected by criticality. In fact, the condition (10), 
which is no other than (0A/0~)p.r---0, means that the system becomes 
indifferent to changes in the species concentration. In equilibrium, when 
A = 0, the reaction is balanced and the measured rate is zero. Usually, a 
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change of ~ from ~,q builds up an affinity A # 0 which acts as a driving 
force to restore the equilibrium. However, due to the thermodynamic 
properties of the critical region, a change in ~ does not create a restoring 
force (i.e., affinity) and the reaction continues to be balanced although 

5~ ~eq" The net rate continues to the zero. In other words, the physical 
explanation of the slowing down of the chemical reaction is the same as 
that of diffusion near the critical points. The only difference is that the 
chemical perturbation is homogeneous, in contrast to the inhomogeneous 
diffusion changes. 

All the above consideration hold for a two-component mixture with a 
single chemical reaction. For more complicated systems the slowing down 
is weaker (with the "weak" critical index c~) or does not exist at all. ~13~ 

3.2. Cr i t ica l  A n o m a l i e s  of  Chemica l  Equi l ibr ia  

In addition to singularities in the rate of reaction, some peculiar 
behavior of equilibrium concentrations of reagents takes place near the 
critical point. The dissociation-recombination reaction of the form B 2 ~ 2B 
near the single liquid-gas critical point of the binary mixture of B2 and B 
has been considered in ref. 14, which, however, suffered from some in- 
accuracies that have been corrected by Wheeler and Petshek. (~5) According 
to common sense, one expects that increasing (decreasing) the temperature 
should result in increasing (decreasing) the concentration of monomers in 
all dissociation-recombination reactions. Indeed, both energy (due to bond 
energy) and entropy (due to number of particles) considerations seem to 
lead to this very same conclusion. Quite unexpectedly, the opposite has 
been observed in qualitative experiments performed by Krichevskii and his 
collaborators, I~6) who studied the equilibrium N 2 0 4 ~ 2 N O 2  in dilute 
solution in CO 2 in proximity to the critical point of the mixture. While 
another interpretation of this almost 20-year-old experiment exists,(~5'~7)it 
does not question the very existence of the anomalies in chemical equi- 
librium near critical points, no matter how small they are. Consider a 
variation of the temperature along an equilibrium line of a reactive binary 
mixture B2 ~ 2B at, say, constant pressure. Since the affinity A = #B2- 2#B 
vanishes for any equilibrium state, we can write along the equilibrium line 

0 = dA = (~?A/~?T)~,p dT+ (OA/O~)~-e d~ (22) 

where d~ = dnB2 = --dnB/2 is, according to (4), the change in the extent of 
the reaction. 

From Eq. (22) it follows that 

(d~/dT)e,.q~,~.~= --[(~H/O~)r ,p] /[T(~A/~)r  p] (23) 
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where the thermodynamic identity (4~ 

(~?A/OT)p,~ = (OS/O~)r,e = [A + (c~H/O~)T,e]/T (24) 

has been used, with H and S being the entalpy and entropy, respectively. 
The derivative (OH/cO~)r, e has no critical singularity; therefore, the slope of 
concentration curves ~(T) is inversely proportional to the same derivative 
(OA/O~,)r,e, which, according to (21), determines the critical slowing down. 
Hence, the derivative (d~/dT)p,e q exhibits a strong divergence at the critical 
point which is characterized (is) by critical indices 7 or ( 6 -  1)/6, depending 
on whether the critical point is approached at constant critical volume or 
pressure, respectively. 

It should be noted that we used ~ similar arguments for an explana- 
tion of the technologically important phenomenon of "supercritical extrac- 
tion" -the substantial increase in the ability of near-critical fluids to dis- 
solve solids. Let us denote the solid phase by s and the fluid phase by g. 
The equality of the chemical potentials in the two phases is a necessary 
condition for the coexistence of these phases. Thus, for the solid, 

#'(T,  P) - I~g(T ,  P, x) =- Ag = 0  (25) 

where use has been made of the fact that the solid phase is composed only 
of solid, i.e,, its concentration x is equal to unity in this phase. Consider 
now isobaric changes in temperature along the equilibrium line: 

0 = d Ala = (OlAs/c~T)p d T -  (Olzg/37')p,x d T -  (O#g/c~X)r,v dx (26) 

Equation (26) can be rewritten as 

(Ox/OT)e = ( s -  Z)/(Olag/Ox)r,v (27) 

where we defined the molar entropy of the solid s"=  -(OlaJOT)e and the 
partial entropy of the solid in the fluid phase g= - (OlZ/3T)e,x .  

Equations (26)-(27), which are analogous to (22)-(23), explain the 
supercritical extraction. Indeed, near the critical points the denominator in 
(27) goes to zero, leading to a strong divergence of the slope in the 
solubility curve. 

The system outlined above contains a small amount of solid dissolved 
in fluid. One may use also the binary mixture as the solvent and the solid 
as the solute. 

We have suggested ~ the use for supercritical extraction of the 
neighborhood of a consolute point rather than usually used liquid-gas 
critical point. The former are characterized by much lower pressures and 
temperatures, and so have clear technological advantages. 
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4. T H E  EFFECT OF C H E M I S T R Y  ON C R I T I C A L  P H E N O M E N A  

4.1. M o d i f i c a t i o n  of  Cr i t ica l  Indices 

The preceding section considered the influence of the criticality on an 
existing chemical reaction. However, such influence is mutual, and I raise 
now the problem of changes in critical phenomena arising from the 
presence of a chemical reaction. 

The singularities of the thermodynamic (and kinetic) quantities near 
the critical points are determined by the critical indices. Theoretical 
calculations of these indices assume the constancy of some intensive 
variables ("fields"),' say, the pressure P or the chemical potentials #, while 
in practice it is impossible, for example, to ensure the constancy of / t  (one 
has to vary the concentrations during the course of the experiment). 
Similarly, P remains practically unchanged near the liquid-liquid critical 
points because the experiment is carried out in the presence of saturated 
vapor. On the other hand, it is quite difficult to ensure the constancy of P 
near the liquid-gas critical point where a fluid is highly compressible. 

In order to compare theoretical calculations for an ideal one-compo- 
nent system and experimental data obtained on the "real" objects, 
Fisher (2~ established the theory of renormalization of critical indices. The 
main idea of the renormalization can be explained by the following simple 
arguments. For  a pure substance, the mechanical stability is determined by 
(c~P/c~v)r<O. The condition for diffusion stability in a binary mixture has 
the form ((?#/~?x)r,~ > 0, which by a simple thermodynamic transformation 
can be rewritten as (~?P/c~v)r~, < 0. One can say, therefore, that at constant 
chemical potential /& the critical behavior of a binary mixture, which is 
defined by the stability conditions, will be the same as that of a pure sub- 
stance. Multicomponent systems behave in a perfectly analogous manner, 
namely, the stability condition for an n-component mixture is determined 
by the condition (~?P/~?v)r.~j ..-~o-1 < 0, where n - 1  chemical potentials are 
held constant. However, the critical parameters now depend on the 
variables ~ti, and in order to obtain experimentally observable quantities 
which correspond to constant concentrations xi, one has to pass, say, from 
T(#) to T(x). As a result, when one goes from a pure substance to a binary 
mixture the critical indices above and below a critical point are multiplied 
by _+(1-c  0 ~,(2o) where the minus sign refers to the specific heat at 
constant volume, the plus sign refers to all other critical indices, and z is 
the critical index of the specific heat at constant volume. We have 
considered (2t~ the renormalization of the critical indices associated with the 
presence of chemical reactions. As an example, let us again consider a 
binary fluid mixture AI-A 2 with the single reaction v~A1 + vzA 2 = 0  (say, 
the isomerization reaction). The latter means that the law of mass action 
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(2) is satisfied, i.e., - A  ~ v l # ~  + v2/iA2 = 0, which, in turn, reduces by one 
the number of thermodynamic degrees of freedom in a binary mixture. The 
reactive binary system, therefore, has an isolated critical point, and the 
critical indices of this system are the same as of a pure fluid, namely, 

(Ov/~P)T ,~  --o ~ Cp, A =0 ~ [ ( r - -  r c ) / r ~ ]  -~  
(28) 

( g v / O P ) s , A =  o ~ Cv, A = o ~  [ (T - -  T ~ ) / T c ] - ~ ,  etc. 

It is interesting to compare (28) with the case of frozen chemical reaction 
(no catalyst is added). Then, the system considered is a binary mixture 
with a liquid-gas critical line. The renormalizations of critical indices of 
such systems are well known(2~ 

C p,~ ~ ( ~v /OP)r ,~  "~ [ ( T -  Tc)/T~.]  - ~ / o - ~ )  
(29) 

Cv,~_ ~ (Ov/OP)s,~_ ~ [ ( T -  Tc)/T~.]  ~/(~ -~)  

The correspondence between (28) and (29) becomes obvious from the 
thermodynamic relation (4) 

C p,~ =o = C e,r - hz(~?~/O A )T,p (30) 

where h is the heat of reaction. In fact, the asymptotic behavior of the left- 
hand side of Eq. (30) on approaching a critical point is determined by the 
second term on the right-hand side, rather than by the first one, which has 
a weaker singularity there. 

Thus, the occurrence of a chemical reaction in a system under con- 
sideration modifies the critical indices of the experimentally observable 
specific heats at constant volume and constant pressure (or inverse 
velocities of sound) compared to a system with frozen chemical reactions, 
and they are changed from ~/(1-c~) and - c t / ( 1 - ~ )  to - ~  and - 7 ,  
respectively. Thus, the specific heat at constant volume, for example, has a 
weak singularity at a critical point when a chemical reaction proceeds 
instead of a finite, although cusped behavior in the absence of a chemical 
reaction. 

The singularities become weaker for many-component mixtures. A 
common situation is when the solutes undergo various chemical transfor- 
mations while the solvent does not participate in them. Consider, as an 
example, the critical system containing the reactive binary mixture 
dissolved in some solvent. Due to the existence of a neutral third compo- 
nent, the system considered has a line of critical points rather than an 
isolated critical point, as in the case of the reactive binary mixture. 

Let us consider first the frozen chemical reaction. The singularities of 
the thermodynamic quantities in a ternary mixture at constant chemical 
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potential #o of the solvent are similar to those of a binary mixture. The 
liquid-liquid critical points hardly depend on the pressure, so that the 
parameter Rpc dTc/dp (Pc is the critical density) is very small. It is this 

�9 �9 " ) 2  parameter which determines the region of renormahzatlon. (- ~ Therefore, in 
this case, as for the vicinity of the )~ line in helium, the renormalization is 
absent, and 

Cp,~,~o ~ r(#o)-~; C~,~,~ 0 ~ 3(#o)-~; 3(#0) = I T -  Tc(I-lo)]/rc(#o) 

However, measurements are taken at the constant number of solvent 
particles rather than at #0=const .  According to renormalization 
procedure, near the liquid-liquid critical points one obtains 

C p,~,No ~ C l , ,~ ,N  0 ~ [ ( T -  T , ) / T c ]  ~/Ct ~ (31) 

Unlike the liquid-liquid critical point, there are two renormalizations 
for the neighborhood of liquid-gas critical point: the first is when one 
passes from the binary to the ternary mixture, and the second renormaliza- 
tion takes place when passing form #o = const to No = const. Accordingly, 
in the region of renormalization of the ternary mixture we have 

Ce,~,~0 ~ ~-~/(~- ~); C~,~,~0 ~ ~/~ -~) (32) 

and for No = const 

Cp, ~,,% ~ ~/(~ -~ ;  C~,~, ~: 0 ~ const (33) 

Comparing (31) and (33), one concludes that without chemical reac- 
tions the cusplike behavior exists for both specific heats near the liquid- 
liquid critical points and only for the specific heat at constant pressure near 
the liquid-gas critical points. 

Let us turn now to the case where a chemical reaction takes place. The 
singularities near the critical points can be found from the thermodynamic 
relations, analogous to (30): 

Cp No ~ - Cp :Vo ~ T(~d,/OA)p, T 2 , , _ 0  = , , - -  T, N o ( ( ~ A / 0  )P,  No, ~ 
(34) 

C~,:%,A =o = C ~ , ~ V o , ~ -  T ( C ~ / c ~ A ) ~ , T ,  N o ( ~ A / O T ) ~ , N o , ~  

For both types of critical points, the singularities of thermodynamic 
quantities in a system with chemical reaction (A = 0) are determined by the 
second term on the right-hand side of Eq. (34). The factor OA/OT in the 
latter term remains finite at the critical point, while the second factor has 
the assymptotic behavior 

( ~ / ~ A ) p , v , , o ~ ~ ( # o )  -~' , (~/~A)~, r,~0 ~ ~(#o) -~ (35) 
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and after the renormalization 

( ~ / O A  ) p,r, uo ~ [(T-- Tc.)/Tc] ~/~1-~1 
(36) 

( O~/~A )~,r, xo~ [ ( T -  T,.)/Tc] ~/~1-~) 

Therefore for a system with chemical reaction one obtains from (34) 
and (36) 

Cp, No,A =0 ~ (~v/OP)T, No,A =0 ~ "r ~/(1-~) 
(37) 

C v ,  No, A -- 0 ~ ( ~ u / ~ P ) s ,  No, A = 0 ~ ,.(~/(1 ~) 

Hence, by comparing (31) and (33) with (37), one can conclude that 
the existence of a chemical reaction leads to a magnification of singularities 
of the specific heat at constant pressure for both types of critical points 
[from cusplike behavior c~/(1 - ~ )  to the weak singularity -c~/(1 -~ ) ] .  On 
the other hand, the specific heat at constant volume changes its asymptotic 
behavior (from constant to cusp) only near the liquid-gas critical points. 
One can, in principle, detect such a magnification experimentally. 
Experiments might be slightly easier near the liquid-liquid critical points, 
because these points are usually located at atmospheric pressure and room 
temperature. 

4.2. Singularities of Transport Coefficients in 
Reactive Systems 

In order to find critical contributions to transport coefficients, one 
must go beyond the linear hydrodynamic equations (16) (19). The different 
ways of attacking this problem include, among others, the mode-mode 
coupling ~23) [taking into account nondissipative nonlinear terms in Eqs. 
(16)-(19)] and the dynamic renormalization group methods (24) (including 
both dissipative and nondissipative interactions). 

The description of these methods is clearly beyond the scope of this 
article. I present, instead, results of the application of the above methods 
to reactive systems, and compare them with those for nonreactive systems. 

4.2.1. Mode-Coupling Analysis. The nonlinear contribution to 
the following three transport coefficients has been found: the microscopic, 
Onsager part of the chemical relaxation time L [ ~ , ~ =  L(~A/O~)p,r], the 
diffusion constant D, and the shear viscosity r/. According to the famous 
Green-Kubo formula, the transport coefficients can be written as time 
integrals of the correlations of appropriate fluxes, which, in turn, are 
expanded in powers of the hydrodynamic variables. One has to find the 
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implications of the chemical reactions for the usually calculated divergences 
in c~ [D=~(SA/8~)e.T] and t/, as well as to see whether L has any 
nonlinear critical anomaly. 

One can show (8) from general symmetry considerations that L has no 
mode-coupling corrections and it remains finite, as in the conventional 
theory of critical slowing down. (H) Such a notable difference in the critical 
behavior of L and c~ (which characterizes the diffusion process and has a 
strong singularity at a critical point) can be understood in the following 
manner. In contrast to diffusion, the homogeneous chemical reaction has 
no characteristic length, and therefore it is not influenced by the correlation 
length 2, which diverges at the critical point. 

In calculations of critical corrections AD and z/t/, we neglected the 
small critical index, assuming the Ornstein-Zernike form for the suscep- 
tibility. In turns out that the most significant contribution to At/ is the 
integral over the wave numbers K of the form 

Z~t/~ fKKI2 [K 2 NK/(K 3 -~ LK2)] (38) 

While the upper limit K 2 of the integral is related to an unimportant 
cutoff, the lower limit K~, the inverse correlaqtion length 2 i vanishes at 
the critical point. Where there is no reaction (L = 0) this integral diverges 
logarithmically at the critical point, z / t /~ln  r. (In fact, a more careful 
calculation of At/ leads to a weak-power divergence rather than a 
logarithmic one.) However, when L r 0 the integral (38) does not diverge. 
From this fact it turns out that the viscosity in reactive systems remains 
finite at the critical point. Notice that if L is extremely small (i.e., extremely 
slow chemical reaction), then t /would grow approaching the critical point, 
but its growth would be terminated once the correlation length becomes of 
order of L - i, 2 - 3 ~ L2 - 2. 

The final result of calculations of the mode-coupling corrections to the 
wave number-(frequency)-dependent diffusion coefficient in reactive binary 
AD is (~8) 

JD = [ ~  T2 - ' /6~pt /y  2 ] [ K ( x )  - ~(x3/~ -3) 1(( Y)] (39) 

where 2 is the correlation length, X = / ( 2 ;  Y= X[8/(1 + 8 + X)] 1/2, O ~ L/q; 
/ /=  8/(1 + 3). The function K(X) is 

K(X) = (3/4)[(1 + X 2) + (X 3 - X -j ) tg -~X] 

When L = 0  one comes back to the well-known result for nonreactive 
mixtures. ~23) The influence of the chemical reaction on the diffusion 
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coefficient can be easily seen in the two limiting cases of low frequencies 
/s < 1 (the "hydrodynamic" region) and of high frequencies /s  1 (the 
"critical" region). 

(a) F o r / ( 2  ~ 1, K ( X ) ~  X 2, then 

AD ~ [KB T2 -~/6rcp ] ( I - fll/2) (40) 

The usual result (23~ A D . r  1 ~ 2 -~ is recaptured. However, the coefficient is 
renormalized. Remembering that D = c~(#A/O~)r,e, we conclude that since 
r/is not divergent in reactive systems, cz diverges like 2. 

(b) For g)~ ~> 1, K(X)  ~ (3~/8)X 2, and 

AD ,~ [KB T-K] / [16 (q  + L ) p ]  (41) 

Again this result is similar to the case of a nonreactive binary mixture, 
except for the renormalization of the coefficient of K. 

One concludes that the diffusion coefficient in reactive systems still 
vanishes like 2 1 with a modified coefficient of proportionality due to the 
chemical reaction. 

The mode-coupling method has been used (25~ for the analysis of the 
propagation of the sound in a reactive binary mixture near the critical 
point. Such an experiment, where the equilibrium state is minimally 
perturbed, could be a useful test for verification of the abovementioned 
singularities of rate of reaction and kinetic coefficients in reacting systems. 

The general formula for the complex sound attenuation coefficient 
~(co) has been obtained by Kawasaki. (23) The real and imaginary parts of 
ci(co) determine the observable sound attenuation e(co) and sound velocity 
changes A C(co), respectively. The existence of a chemical reaction results in 
an additional mechanism for the relaxation of the composition back to its 
equilibrium value. For  nonreactive systems, relaxation is associated with 
diffusion. Just as diffusion processes show critical slowing down with a time 
scale "cD~(DK2)-I~,~ 3~ [(T-T~.)/T,.] 3v, the sound attenuation will 
show this critical behavior. On the other hand, if the chemical reaction is 
on a faster time scale than diffusion and shows the critical slowing down, 
then the sound attenuation will relax on a time scale zc ~ [ ( T -  Tc)/Tc]-V 
(see Section 3.1). As y <  3v, the chemistry is faster and will dominate the 
diffusion, which can be seen in sound experiments. 

Notice that the diffusion coefficient D(K) is wave number dependent 
and, according to Eq. (41), at high frequencies, D ~ K ,  i.e., the charac- 
teristic diffusion time scale will then be z D ~ ( D K Z ) - I ~ K  -3. This will 
finally occur on a faster time scale than the chemical reaction and the 
crossover will occur back to diffusion-controlled sound attenuation. 
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Finally, by plotting ~(O.))/C0 2 v e r s u s  o at various temperatures, one can 
see whether rD ~ [ ( T -  rc)/r , .  ] 3v or r C ~ [ ( T - -  Tc)/T,]  ~ yields a better 
dynamic scaling function. The calculated change in sound velocity AC/o2C 
for cot < 1 turns out (25) to be proportional to (coz) ~/2 in the nonreactive and 
to cot in the reactive case. 

4.2.2.  Renormalization Group Methods.  The hydrodynamic 
equations (16)-(19) are written for the local space-averaged variables 
p(r, t), T(r, t). Similarly, the renormalization group technique allows one to 
use averages over increasing ranges, thereby reducing the number of effec- 
tive degrees of freedom of the system considered. Such a procedure is of 
special importance near the critical points, where, due to divergence of the 
correlation length, the increasing number of degrees of freedom becomes 
important. The efficient computing schemes which have been developed for 
studying the static critical phenomena (26) have been extended to cover the 
dynamic critical phenomena. (24) 

The starting point for the latter theory is the identification of the slow 
mode(s), whose relaxation times go to zero at small wave numbers, and 
also (if the order parameter is not conserved) the order parameter mode. 
Classifilcation of all possible cases (models A-H)  with the proper results is 
given in ref. 24. One has therefore to allocate each system in which we are 
interested to the appropriate model of ref. 24. Such an identification 
depends also on the regions of wave numbers which define the relative 
importance of different modes. 

The distinctive feature of reactive systems is the existence of a 
homogeneous chemical mode, which strictly speaking, converts the concen- 
tration into a nonconserved parameter. Milner and Martin (~3) performed 
the renormalization group analysis of a reactive binary mixture, improving 
thereby the results of the linear analysis of the critical slowing down 
described in Section 3.1. 

The results obtained (x3) are presented in Table 1 for different regions of 
wave number defined (see Section 3.1) as Kc = (Dr) -J and KH=(2~)  -1, 
where 2 = (kTD/Ce,~)(6A/c~)p ' T. 

Table I 

R G  co r r ec t i on  to 
Reg ion  Slow cr i t ical  m o d e  Type  of  model/24~ cr i t ical  s lowing  d o w n  

K <  K a H e a t  H 7 - (18/19)  v ~ 0.64 

K ~ t < K < K  ~ C h e m i c a l  C 7 + c~ + r/v ~ 1.37 

K > K~. Diffusive H y - ( 18/19 ) v ~ 0.64 

822/58/3-4-21 
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Thus, the critical slowing down of a chemical reaction which occurs 
for Kn < K <  K,. is governed by the strong critical index 7 + e + try ~ 1.37 
rather than by 7 ~ 1.26 obtained in the linear theory/TM 

5. PHASE SEPARATION IN REACTIVE S Y S T E M S  

5.1. Mul t ip le  Solut ions of the Law of Mass Act ion 

Until now we have considered single-phase reactive systems near their 
critical points. Another interesting problem is the phase separation in 
reactive systems as compared to that in nonreactive systems. Will the 
addition of a very small amount of catalyst [which promotes a chemical 
reaction(s) in a system] stimulate or restrict the coexistence of different 
phases, and accelerate or slow down the kinetics of phase separation? I 
consider the thermodynamic requirements in Section 5.2 and the kinetics in 
Section 5.3. To begin with, I consider the possibility of multiple solutions 
of the law of mass action. The two (or more) coexisting phases which have 
the same temperature and pressure are different, however, in concentra- 
tions of different components and, therefore, in conducting chemical reac- 
tions(s). The latter means that the law of mass action (2) has more than 
one solution at some temperatures and pressures. This existence of more 
than one equilibrium composition is very important for chemical engineers 
who calculate the phase diagrams of multicomponent reactive systems. 

Let us clarify the physical reasons for the appearance of multiple 
solutions of the law of mass action. For  a reaction taking place in a fluid 
the chemical potentials have the form 

/~i-- #O(p, T) + K B Tln(xiT~) (42) 

where the activities 7i determine the deviation from the ideal systems where 
7i = 1. Using (42), one can write the law of mass action (2) as 

x,x2~,, ~z. . .x ,V"-  Kid(P , -  T)7  1 vl " ' '~2  vn~K  (43) 

The chemical equilibrium constant for the ideal system Kid is 
determined by the functions/~o in (42), i.e., by the properties of individual 
nonreacting components, while for the nonideal systems K depends also on 
the interactions among components. For  the ideal systems all 7~--1, and 
Eq. (43) has a single set of solutions xl ..- x ,  (The mathematical proof has 
been given by Aris. (27)) For  nonideal systems the activities 7~ depend on the 
x~; therefore for certain values of P and T, Eq. (43) can have more than 
one solution for the concentrations of reagents. 

It is clear from these arguments that a system has to be considerably 
nonideal for the existence of multiple solutions of (43), i.e., the interaction 
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energy must be of the order of the characteristic energy of a single particle. 
One possibility is for the interaction energy between particles to be high, 
as, for example, in a gas consisting of charged particles (plasma, 
electrolytes, molten salts, metal-ammonium solutions, solid-state plasma). 
Another possibility is when the characteristic energies of single particles are 
small, as in the case of isomers. We have considered in detail both the 
isomerization (28~ and the dissociation (29) reactions. The isomerization 
reaction between different nonideal substances has also been considered" 
by Caram and Scriven. (3~ Othmer (31~ extended this analysis to three- 
component mixtures with different single reactions. 

Consider the ionization equilibrium of the chemical reaction of the 
form A ~ - i +  e (dissociation-recombination of the neutral particles into 
positive and negative charges). Neglecting the complications associated 
with the infinite number of bound states, assume that Kid ~ exp(Io/KB T),  
where lo is the ionization potential of a neutral particle. Under the assump- 
tion of Debye screening of the electrostatic interaction, one readily 
finds(29. 32~ that 

K =  Kid exp[ -- q~(x, T ) / K ,  T ]  ~ exp{ [I0 - q~(x, T)  ] / K  B T }  
(44) 

~(x, T )  ,.~ (8~cx)l/2(e2/KB T)  3/~ + B x  + . . .  

where x is the concentration of charges, and the function B, which deter- 
mines the pair correlation between charges, is tabulated in ref. 27. 

At certain T (and P), Eq. (44) manifests several solutions for x which 
have a simple physical meaning. The function ~b(X, T) in (44) diminishes 
the ionization potential 1 o as a result of screening. This means that the 
phase with the larger degree of ionization has higher energy and a higher 
entropy than the second phase. Hence, these two phases can have equal 
chemical potentials and can therefore coexist. The chemical reaction 
proceeds thereby in different ways in two coexisting phases. Therefore, the 
appearance of multiple solutions of the law of mass action is a necessary 
condition for the phase separation in reactive systems, where a chemical 
reaction proceeds in all phases. 

5.2. Phase Equilibria in Reactive Binary Mixture:  Isornerization 
and Dissociation Reactions 

Let us assume that two components A~ and A2 participate in a 
chemical reaction of the form ViAl~v2A 2 (Isomerization reaction 
corresponds to vl = v2). The law of mass action (2) for this reaction 
becomes 

vl/~1 - v2#2 = 0 (45) 
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If the system separates into two phases, their temperatures, pressures, 
and chemical potentials have to be equal: 

#i(P, T, x ')  = #,(P, T, x"); i =  1, 2 (46) 

where x' and x" stand for the concentrations of one of the two components 
in two phases. The ideal system is unique, but the range of nonideal 
behavior is so wide that the general analysis is very hard. I illustrate the 
general behavior on the simplest model of a strictly regular A 1-A2 solution 
where the chemical potentials have the following form(43: 

#1 = #O(p, T ) + K B T l n x + w ( 1 - - X )  2 

Op #2 = #2( , T) + KB T in(1 -- x)  + wx  2 
(47) 

The coexistence curve is defined by Eq. (46), which by using (47), 
gives (4~ for the concentrations of the two coexisting phases x'  = 1 - x" and 
the symmetric coexistence curve: 

co/KB T = [ln x - ln(1 - x ) ] / ( 2 x  - 1) (48) 

The law of mass action (45) can be written, using (47), as 

c o / K u T = [ l n ( 1 - x ) - 6 1 n x ] / [ A + 6 ( l - x ) a - x  2] (49) 

where 

6 = - (~ , /~2) ;  3 = (a# ~  #~ (50) 

Phase separation in a reactive binary mixture will occur if and only if 
Eqs. (48) and (49) have a common solution. One can immediately see that 
Eqs. (48) and (49) coincide if both A = 0  ("symmetric" mixture) and 6 = 1 
(isomerization reaction). If 6 = 1, A r 0, these equations have no common 
solution, and the strictly regular reactive binary mixture will not separate 
into two phases. In all other cases, one can equate the right-hand sides of 
Eqs. (48) and (49) to obtain 

[ ( 1 - x ) a l n ( 1 - x ) - x 2 1 n x ] / [ l n x - l n ( 1 - - x ) ] = A / ( 6 - 1 ) = _ _ q  (51) 

The concentration x ranges from zero to unity. Therefore, Eq. (51) has 
a solution only for q <  (21n 2 - 1 ) / 4 = 0 . 0 9 7 .  Only for substances and 
chemical reactions satisfying this inequality does the model of a strictly 
regular reactive binary mixture allow phase separation. If, for instance, 
A = 0.09 and 6 = 2, the criterion q < 0.097 is satisfied, two phases may 
coexist, and their concentrations are given by intersection of the 
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coexistence curve (48) and the law of mass action (49). In contrast, for 
A = 0.02 and ~ = 1, the above-mentioned criterion is not satisfied, these two 
curves have no intersection, and hence there is no phase separation for this 
reactive system. 

The noncompatibility of Eqs. (48) and (49) for some P, T, i.e., the 
nonexistence of a common solution for the concentrations in the range 
from zero to unity, may appear in the framework of some models in an 
n-component system with n -  1 independent chemical reactions. In all other 
cases the existence of r chemical reactions will decrease by r the dimension 
of a coexistence hypersurface. 

A ternary mixture with an ionization reaction is another example of 
phase separation in reactive systems. Let us consider a system composed of 
neutral particles which are partially dissociated into positive and negative 
charges. Now suppose that the Gibbs free energy has the following form: 

0 G = NAIlOA -k N1 #~ + Nc#~. + NAKt~  Tln  XA + 2N, KB Tln  x 1 ~-/,/oN1 x I ~- N I I  

(52) 

where NA is the number of neutral particles, N1 (No) is the number of ions 
(electrons), and I is the dissociation energy. Owing to electron neutrality, 
NI=N~,. Here XA(X) is the concentration of atoms (ions): XA= 
N A / ( N  a q- 2N,) = 1 - 2x. 

The first three terms in Eq. (52) describe the ideal gases of the par- 
ticles. The next two terms are the entropy, and the sixth term represents the 
interaction between the charged particles. I keep the arbitrary power e in 
this term, although later I shall pass to the Debye-Hiickel approximation, 
where 

= 1/2; #o = --(e3/3KB T)(P/2e3e~Tc2) 1/2 (53) 

One can formulate the Debye-Hiickel approximation using either the 
Gibbs or the Helmholtz free energy. If one goes from one to the other by 
using the ideal-gas equation of state in the correction term, the Debye-  
H/ickel approximation looks slightly different. I use here the Gibbs free 
energy, and Eq. (53) follows from Eqs. (94.1) and (75.14) of Landau and 
Lifshitz. (33) 

The chemical potentials of the neutral and charged particles can be 
easily found from (52), 

#A = #O + KB Tlnx  A _ C~UoX~ + 1 
(54) 

#q=#, +#c=#~176 X+Uo[(C~+ 1)x~-2~x ~+'] + I  

In order to find the coexistence curve, one has to equate according to (46) 
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the chemical potentials in the two phases. Solving these two equations for 
~uo/KB T yields 

o~l~o/K~ T =  [ln(1 - 2x') - ln(1 - 2x" )  ] / ( x  '~ + ~ - x "~ + 1) 

= 2 c ~ ( l n x ' - l n x " ) / [ 2 , ( x ' ~ + l - x " ~ + l ) - ( ~ + l ) ( x ' ~ - x " ~ ) ]  (55) 

One can immediately verify that Eq. (55) gives the following connec- 
tion between the charge concentrations in the coexisting phases: 

( x ' / x " )  ~ = (1 - 2x")/(1 - 2x') (56) 

For  the Debye-Htickel interaction (53), the coexistence curve has the 
following form: 

x ' =  [1 - x " -  ( 2 -  3X")l/2x"l/231/2 
(57) 

-- [ e3 /6(  KB T ) Z ] ( P /2e3 e 3o g2 ) l/2 = (In x ' -  in x"  )/ ( x '3/2 - x ''3/2) 

If the dissociation reaction A ~ I +  e takes place, one has to add to the 
formula obtained the restriction stemming from the law of mass action, 
#A -- /~I -- /X,, = 0. Using Eqs. (53) and (54), one can write the latter 
equation in the form 

0 0 / t o  I~A-- tXl - -  c I + K B T l n [ ( 1  - 2 x ) / x  2] + ( u o / 2 ) ( 3 x l / 2 - x 3 / 2 ) = O  (58) 

Neglecting the difference in the masses of atom and ion, we put #o = #o. 
Furthermore, using the well-known expression for an ideal gas of electrons, 
one obtains from (58) 

ln[  (P /KB T ) ( 2 ~ h 2 / m e k  T )  3/2 ] + I l K  B T -  [ln(1 - 2 x ) / x  2 ] 

- [e3/6(KB T)2](P/~Z2~3e~)~/2(3xI/2 -- x 3/2) = 0 (59) 

Equation (59) gives the required restriction on the parameters of the 
coexisting phases following from the chemical reaction. One now has to 
find the simultaneous solutions of Eqs. (57) and (59). Unfortunately, it is 
hard to obtain analytical solutions. I will refer to these equations in 
Chapter 6, analyzing the liquid mercury experiments. 

In the two simple examples under discussion (34) the concentrations of 
the coexisting phases have been found analytically. Usually one has to use 
numerical calculations already on this level. 

5.3. Kinetics of Phase Separat ion in React ive  Systems 

The behavior of nonreactive many-component systems "quenched" 
from an initial homogeneous stable state to a metastable state is well 
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known. (35~ The kinetics of phase separation proceeds in two clearly 
distinguished stages. During the first stage the system is located at the 
quenched state "waiting" for the appearance of a significant number of 
critical nuclei due to fluctuations (it is the duration of this stage that it 
usually called "the lifetime of the metastable state"). At the end of this first 
stage the system starts to separate into two phases, and after some "com- 
pletion" time it achieves the two-phase equilibrium state. 

This picture will change if one adds a small amount of catalyst to 
initiate a chemical reaction in this system. The thermodynamic considera- 
tion [the common solution of Eqs. (45) and (46)] gives necessary condi- 
tions for the phase separation. These conditions, however, turn out to be 
insufficient. Even when thermodynamics allows phase separation, it may be 
impossible from the kinetic point of view. Indeed, a chemical reaction leads 
to an additional driving force A r 0, shifting a system homogeneously from 
an initial quenched state to an equilibrium one. Only in the latter does the 
affinity A of the reaction vanish. Strictly speaking, for a reactive system the 
first stage of the nucleation does not exist. Immediately after a quench a 
system is shifted by the chemistry to the closest state on the coexistence 
curve (at the same temperature if one neglects the heat of reaction). 

If a chemical reaction is fast enough, the homogeneous transition will 
occur before the appearance of the nuclei of the new phase, and the system 
will never separate into two phases. If the chemical reaction is slow 
compared with the rate of appearance of critical nuclei of a new phase, its 
presence does not influence the lifetime of the metastable state. For all 
intermediate rates of chemical reactions, their presence will increase the 
lifetime of the metastable state due to the shift toward the coexistence curve 
where the radius of the critical nuclei drastically increases. 

These physical arguments can be supported by simple calculations/36/ 
The traditional phenomenological approach to the decay of a 

metastable state in a pure substance is based on the distribution function 
W(r, t) of nuclei of size r at time t. ~35) The continuity equation has the form 

c?W(r, t)/c~t = -[(?J(r,  t)lar] = (c~/Or)[FW + D(OW/c~r) ] (60) 

where the flux J(r, t) of nuclei along the size axes is determined by two 
unknown functions F and D. We have recently developed the critical 
dynamics approach to metastability, (37/according to which, for a noncon- 
served order parameter, 

F(r) = Do[(1/r)  -- (1/r~)]; D(r) = DoKB T/87rcrr 2 (61) 

where D O is a typical diffusion coefficient far from the critical point and 
is the surface tension. 
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According to ref. 37, the problem of nucleation is subsumed within the 
larger class of general dynamic phenomena in the critical region. Then, one 
reduces the equation(s) of the critical dynamics to the Langevin equation 
for the radius of nuclei with a known random force, which, finally, can be 
transformed to the Fokker-Planck equation (60) with functions F and D 
given by Eq. (61). 

The nucleation process in a binary mixture can be described in 
analogous fashion. (38) The formation energy of a nucleus containing nj 
molecules of component 1 and n2 molecules of component 2 will be 

AG = (/~ -/~1 )nl + (/t~ - #2)n2 + 4~rar 2 (62) 

where #~ and #2 are the chemical potentials of the components when they 
are in the homogeneous phase and g~ and #~ are the corresponding 
quantities when they are in nuclei. The size r of a nucleus is connected with 
its structure, namely 4~zr3/3 = v~n 1 + v2n2, where v~ and v 2 are the volumes 
per molecule. 

In contrast to a pure substances, the critical nucleus is now defined 
not only by its size r, but also by the concentration x ~ = n l / ( n ~ + n 2 ) .  
Therefore, the height of the potential barrier is defined by c?(AG)fi?r= 
c~(AG)/Ox = 0, which gives r~. (and x~.) of the critical nucleus: 

rc = 2 0 [ - X c T ) l  -~ (1 - -  X c ) t ) 2 ] / [ X  c ZJ~l -1- (1 - x~.) A/~2] (63) 

where A#i = g7 - / t i .  
Let us turn now to reacting systems. Here the concentration x changes 

as a result of a chemical reaction, which shifts the initial quanched state to 
the closest equilibrium state on the coexistence curve. Each intermediate 
state corresponds to a different radius of critical nucleus re(t), increasing 
toward the coexistence curve, where rc --' oc. Hence, everywhere one has to 
replace r C by re(t). The latter function can be found from Eq. (63) under the 
assumption of a quasistatic chemical shift. This shift is caused by a chemi- 
cal reaction, and can be described in the linear approximation as 

dx /d t  = - ( x  - x ' ) / r  (64) 

where r-1 is the rate of the chemical reaction. 
On substituting the solution of Eq. (64), x - x ' = ( X o - X ' ) e  '/~, into 

Eq. (63), one obtains 

r~(t) = 2 a [ x " v l  + (1 - x " ) v 2 ] / K  B T [ ( x " / x ' )  - (1 - x")/(1 -- x ' ) J ( x ' -  x " )  

- ro e~/~ (65) 



Closed Reactive Systems 731 

where I have used the coexistence condition (46), and the leading 
logarithmic part of the chemical potentials. 

The next step will be to obtain and solve the Fokker-Planck equation 
for the distribution function W(r, x, t) of nuclei of size r and composition 
x at time t. To this end, I make the following approximation. Assume that 
all the nuclei which are important for the phase separation have the same 
composition x" and therefore omit the argument x in W(r, x, l). In other 
words, one assumes that a chemical reaction brings the path leading to the 
saddle point closer to that of x = x". 

Substituting (61) and (65) into the Fokker-Planck equation (60) one 
obtains 

~?W/~?t = O/c~r{Do[1/r- l/r o exp(t/~)] W +  (DoKB T/87rar 2) (?W/~?r} (66) 

Equation (66) contains two different time scales connected with the 
transient processes (of order of r~/Do) and with the chemical reaction (of 
order r). Consider the quasi-steady-state regime which will be established 
once the transient process is over. The quasi-steady-state solution 
Wqss[r,r,.(t)] does not have an explicit time dependence, so that 
OWqss/Ot = 0. The Fokker-Planck equation (66) can then be rewritten as 

Do[1/r - 1/r o exp(t/r)] Wqs s -~ (DoKB T/Srcor 2) C3Wqss/3r = Jqss(tl/'c) (67) 

The quasi-steady-state flux Jqss reduces to the steady-state flux Jss 
when the chemical reaction is absent: 

Jqss[(t/z) = 0] = Js~ (68) 

There is no stationary state at all for the reacting system considered 
here. Therefore, one is forced to given a new definition of the lifetime of a 
metastable state in reactive systems. The simplest generalization of the 
usual definition is 

7"ca 
I = Jo dt Jqss(t) (69) 

i.e., the time required to produce one critical nucleus. For the time- 
independent case Jqss is replaced, according to (68), by Js~ and T~h by the 
lifetime of the metastable state in the nonreacting system To = J ~ .  

Let us turn now to the solution of Eq. (67). The boundary conditions 
for this equation are determined by the requirements that the distribution 
of nuclei of minimal size ~ will be the equilibrium one and that the total 
number of nuclei in the system is bounded: 

])Vqss(~) = Weq(~); Wqss(r-* o o ) = 0  (70) 

where W~q corresponds to zero flux. 
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The solution of Eq, (67) which satisfies the boundary condition (70) 
has the form ~37) 

Wqss ~- Weq(r ) 1 --Jqss (dr')/D(r') Weq(r' ) (71) 
r 

where 

Jq~s = dr'/[D(r')  Weq(r )3 (72) 

The function W~l(r  ') has a sharp maximum at r c which reflects the 
existence of a barrier to nucleation. Therefore, the integral (72) can be 
evaluated easily by steepest descent. Then 

Jqs~= (KBT/4~za)I/2(Do/2r 2) exp{ - 2 t / r -  [AG(ro) /KBT]e  2'/~ (73) 

where AG(ro)=4rto-r2/3 is the minimal work for producing the critical 
nucleus in the initial state immediately after a quench. 

On introducing Jss defined by (68) into (73), one obtains 

Jqss = Jss exp[ - 2t/z - u(e 2t/~ - 1 )]; u =- AG(ro)/KB T (74) 

Finally, introducing (74) and To=Jss ~ in (69) gives the equation for 
the lifetime Tch of a metastable state in a reacting system as a function of 
that in the nonreacting system To (the latter depending on the volume 
under observation), the extent of quench u, and the rate ~-1 of the 
chemical reaction: 

(,u exp(2 Tch/z) 
1 = (ze"u/2To) Ju [exp(--z)/z 2] dz (75) 

Equation (75) for Toh has been solved numerically. This equation has 
no solution if r is too small, i.e., if the chemical reaction is too fast. Then, 
although the thermodynamics allows phase separation in a reactive system, 
such a separation is impossible from the kinetic point of view. The system 
is dragged by a chemical reaction to a homogeneous equilibrium state on 
the coexistence curve before the nuclei of the new phase appear. The 
minimal z which still allows the phase separation for different quenches 
(with characteristic u and To) is given approximately by the following 
formula: 

(z/To)mi, ~ 3.03 + 2.08u (76) 
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For all smaller values of r, the system will never separate into two 
phases. The two possible sets of experiments performed with and without 
catalyst (different quenches for a given chemical reaction and different 
chemical reactions for the same quench) will be discussed in the next 
section. 

5.4. Comments  on the Geometry  of Reactive Phase Diagrams 

The effect of a chemical reaction on some characteristic points (sur- 
faces) of the phase diagrams will be illustrated here with the help of three 
simple examples. I consider the types of critical points in reactive binary 
mixtures and the azeotropic and melting points of many-component 
reactive systems. 

5.4.1. Upper and Lower Crit ical Solut ion Temperatures in 
Binary Reactive Mixtures.  Different binary liquid mixtures show 
either concave-down coexistence curves on a temperature-concentration 
phase diagram with a so-called upper critical solution temperature (UCST) 
or concave-up curves with a lower critical solution temperature (LCST). 
Under the assumption of analyticity of the thermodynamic functions at the 
critical points, one can obtain the general thermodynamic criterion for the 
existence of UCST or LCST. ~4) We show here that the existence of the 
chemical reaction may lead to the replacement of a UCST by an LCST and 
vice versa. (39) Moreover, the Clapeyron-Clausius equation for a binary 
mixture is determined by the chemical reaction in addition to the latent 
heat and the volume difference between the two phases. 

Consider a mole of a binary mixture which separates into two phases 
B' and B". The system can be described by four parameters P, T, x~, and 
x~ which satisfy the following conditions: 

/~'~(P, T, x~) -- #I'(P, T, x2');  /~(P, T, x~) =/~'(P, T, x2') (77) 

Along the equilibrium surface between B' and B" one can differentiate 
the equilibrium conditions (77). Using some simple thermodynamic relaxa- 
tions, one obtains (4) 

dr1 d P -  ( d h l / T )  d T -  x'2 g'2x dx'~ + x~' g ~  d x j  = 0 
(78) 

Av2 d P -  (Ah2/T) dT + (I -x'2)g'~x dx'2- (1 - x ; ' )  g ~  dx; = 0 

where hi and vi are the partial molar volume and enthalpy, 

Av,=-v;-v;'; 

g'2~, =- (SZg'/Sx'2)p, v; 

Ah i =- h; - h 7 

g'~x - (~2g"/~x;tp, T 
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The partial derivatives of the intensive properties can be found from 
Eqs. (78) at constant pressure or constant temperature or constant 
concentration. (4/ There is no need, however, to consider these special 
section of the coexistence surface when we deal with a reactive system. 
Indeed, for a reaction viA ~ + v 2 A 2 = 0  an additional restriction to (78) 
exists in the form of the law of mass action 

Vl~ i -1- 1)2]J i = 0 (79) 

On differentiating the latter equation along the equilibrium surface, one 
finds 

(vlv'l + VzV'2) d P -  [ (vlh' 1 + v2h'2)/T ] dT  

+ [ v l ( - x ~  g~x) + v2(1 - x~) g~x] dxl = 0 (80) 

The common solutions of Eqs. (78) and (80) determine the slopes of 
the equilibrium line of a two-phase reactive binary mixture: 

T{~P) =I)!x(Z~x2)2-(2Ax2/flt)(Vlh'l + v2ht2) 
\0T//che m h2x(dX2)-----------~ (2Ax2/n,)(vtv, 1 + v2f)2) (81) 

~?T 2Tg2xAxz+  Tnv2x(dx2)-(v~vl+VzV2) g2x (82) 

~?x'2 ~ hzx(Ax2)_vz~(Ax2)(v lh  1 +vah2)(vlv 1 +VzV~) 1 

where n' = vlx'2 - v2(1 - x~); here h' =- (1 - X'R)h'l + x'2h'2 and v' -- (1 - X'z)V'l 
+ X'zV'2 are the heat of reaction and the volume change of reaction in 

phase B'. 
In the absence of a chemical reaction, all but the first terms in the 

denominators and numerators of Eqs. (81) and (82) vanish and those 
reduce to the well-known forms ~4) 

T = - -  (83) 
x~ h~x 

(84) p hL(Ax2)  2 

Equation (81) provides the generalized form of the Clapeyron- 
Clausius equation (83) for a reactive mixture, while Eq. (82) determines the 
criterion of UCST and LCST. The latter can be obtained just as one 
obtains it from (84) for nonreactive systems, c4) 

The "classical" expansion near the critical points [ g ~  ~ g~ g4x(,dx2), 2 _ 
(hC2~/T) 6T, etc.] results in 

( c9~x,2) Tg'4~(x'2-- x~) (85) 
e 4 h ~  
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If x~'>x~ ~>x~, then (?x'2/3T)e is positive if h~2-  (02h/Ox2)~ is 
negative. These signs define a UCST. Analogously, an LCST corresponds 
to (32h/~x2) ~ > O. 

Performing a similar expansion near the single critical point of a 
reactive binary mixture, one obtains from Eqs. (81) and (82) 

(C3~T) vth~" + v2h~r (86) 
T '~" cr cr  

t h e m  V1UI + Y 2 / 3 2  

(~x2)  c~ v z, or\-~ 8T _(t,"-v" vlhl + 2,~2~ 
c h e m  

"~ Tg '4x (x i - - x j )h~: ( l  v~h~+v2h~ ~ dTc ~ - '  
vtv~ + v2v~2 ~ TcdP/  (87) 

Equation (83) was used in the last relation in (87). As is clear from 
(87), the existence of a chemical reaction may change the type of the criti- 
cal point (UCST to LCST or vice versa) if the last bracket in (87) is 
negative. The ratio of the second derivatives V~z~,/h~ can be replaced by the 
ratio of excess volume V E and excess entalphy h E at the critical point, 

Thus, a chemical reaction will change the type of the critical point if 
the following (equivalent) inequalities are satisfied: 

v h ~ _  h ~ v ~ ,  vlh~+v2h~ ~ 1 dTc ~,~j - v2_2  --AE> 1 or - - >  t (88) 
cr cr  cr cr  cr  v~v~ + v2v2 h e VlV ~ + v;v 2 T,. dP 

hE 

Xz=O X z  = I 

I 

x~ r 

Fig. 1. The typical form of the excess enthalpy hE (or excess volume VE) for a binary 
mixture as a function of concentration. Points a and b correspond to the critical molar 
enthalpy of pure substances. 
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The form of the critical line near the critical point dTc/dP as well as 
Ve and he can be found in refs. 40 and 41. Some typical examples of 
positive VE and he are shown in Fig. 1. Using the definition of the partial 
molar quantity Yl =y-x2(@/~?x2)r,e, where y ~  {h, v}, one can see that 
the points a, b in Fig. 1 give h~ r and h~ ~ (or analogously, v~ r, v~r). For an 
isomerization reaction, Vx = -v2 = 1 and (88) becomes 

h T - h 7  v~ r 
h ~  cr cr U 1 --  V 2 

> 1 (89)  

There are no physical reasons why the criterion (89) should not be 
satisfied for some mixtures. Then, the presence of a chemical reaction will 
change USCT to LSTP and vice versa. 

5.4.2. Azeotropic Points in Reactive Many-Component 
Systems. A typical temperature-composition projection of the T-x'-x" 
equilibrium surface (at constant pressure) is shown in Fig. 2. This mixture 
forms an azeotropic point A, where (4~ "distillation (or condensation) takes 
place without change of composition." The azeotropic states, like the criti- 
cal states, do not exist for ideal nonreactive mixtures. 

The situation is quite different for reactive mixtures. It turns out ~5) that 
for reactive systems an azeotropy exists even for ideal mixtures, and it is no 

A 

Fig. 2. Liquid-gas equilibrium in a binary mixture, showing the azeotropic point A. 
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longer defined by the equality of phase compositions. For reactive mixtures 
the latter condition is replaced for c-component two-phase systems by 

(X~--Xtl)/(Y1--VTXl)=(X;t--X;)/(Yi--YTX;); i = 1 , 2  ..... c - 1  (90) 

where vv=Zf '=  1 vi. 
A simple proof (s) of Eq. (90) is based on the conservation laws in a 

closed system in which a c-component liquid mixture is being vaporized at 
constant pressure (or at constant temperature). The material balance for 
component i gives 

d(V'x;) +cl(V"x;') d~ 
dt dt = vial-7; i = 1 , 2  ..... c - 1  (91) 

where V' and V" are the molar volumes of the two phases and ~ is the 
extent of reaction. Using now the overall balance 

dV'/dt + dV"/dt = vv d~/dt (92) 

one can rewritte Eq. (91) in the following form: 

V' dx; dx!' d~ (x;' dV" 
+V"-v"'dt =(v i - -vvx; )d t ' - -  -x;)-- 'dt ' i = 1 , 2 , . . . , c - 1  (93) 

During the azeotropic transformation, the composition of each phase 
is constant, i.e., dx~/dt = dxT/dt = 0, and (93) reduces to 

( x ; ' -  x; ) / (v , -  vrx;) = (d~/dt)/(dV/dt); i =  1, 2,..., c - 1 (94) 

The right-hand side of (94) does not depend on i, which thereby proves 
Eq. (90). 

5.4.3. Ef fect  of Chemist ry  on the Solubi l i ty  Curves of 
Binary Mixtures. Consider the phase diagram near the melting point 
for a two-phase system consisting of a solid component AB which 
dissociates completely on melting and the liquid of the same composition. 
The T-x~ projection of the phase diagram is shown in Fig. 3, where T + is 
the melting point, the vertical line at X,  = 1/2 describes a solid phase, and 
the dashed lines relate to liquid phases with concentrations larger and 
smaller than 1/2. The existence of two branches of the solubility curve can 
be explained by the lowering of the melting point by the addition or 
removal of one component. The solubility lines, therefore, meet in a point 
at T =  T +. 

Let us now allow a chemical reaction (dissociation) in the liquid 
phase: 

AB ~ A + B (95) 
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Fig. 3. 

f //i/ \k\\\ 
II \\ 

XB=I/2 ---~-X B 

Liquid solid solubility curves for compound AB with (solid curve) and without 
(dashed lines) the dissociation reaction. 

Then, the solubility curves will be rounded at T =  T +, as is shown in 
Fig. 3 by the solid curves. The solubility curves become more and more 
rounded with an increase of the degree of dissociation. This may be shown 
as follows. 

Let the liquid solution have the total compositions XA, XB and the 
detailed composition Y A , Y B, Y AB ( Y A + Y B + Y AB ----" I )" The chemical 
potential of AB in the solution must be equal to that in the solid (which 
plays the role of the chemical potential "bath" for the solution). The 
chemical potential of the solid depends only on temperature, and therefore 
one may assume that for small degrees of dissociation YAB is a function of 
T alone, say YAB = f ( T ) .  

Let us introduce now the small parameter ~ to describe the left part 
of the melting curves (XB < �89 

= 2(�89 - XB) (96) 

The x, y variables are connected by the relation 

Zl(B = (YB + YAB)/(YAB q- YB + YAB + YA) (97) 

Using Eqs. (95) and (96) and the relations Y A h = f  ( T )  and 
YA + YB + f ( T )  = 1, one obtains 

l - f  (T) ~-~[l+f(T)]; 1 - f ( T )  ~[l+f(T)] (98) 
YA 2 2 YB 2 2 
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Assuming that the dissociation is small and therefore the solution is 
ideal, one can write the law of mass action for the reaction (95): 

Ya YB = K(T)  (99) 

Substituting (98) in (99), one can rewrite the latter in the form 

~2= I1 --f(T)]2/[l + f ( T ) ]  2 - 4 K ( T ) / [ 1  + f ( T ) ] 2  ~ Q(T) 2 -  R ( T )  2 

(100) 
At T = T  +, 4 = 0 ,  i.e., Q( T+ )= R( T+ ). Expanding Eq.(100) near (T  +, 

= 0), one obtains 

~ 2 = 2 Q ( T + ) [ R ' ( T + ) - Q ' ( T + ) ] ( T + -  T ) +  ... (101) 

Equation (101) describes a melting line in the presence of a chemical 
reaction (solid curve in Fig. 3). 

We now turn to the case of a nonreacting mixture. Then, K ( T ) = 0 ,  
and the first term in a series expansion of Eq. (100) near T +, ~ = 0 is of the 
second order in (T  § - T): 

~2 = Q , ( T  § ) 2 ( T  § _ T ) 2  + . . .  (102) 

i.e., the melting lines in this case meet at a point (the dashed curves in 
Fig. 3). 

The reason for the difference between Eqs. (101) and (102) was 
explained as early as 1892. ~42~ If in the solution there were any appreciable 
dissociation of AB into its constituents, then, in contrast to the non- 
dissociated solution, an infinitesimal addition of either component does not 
change the equilibrium temperature. Therefore, the melting point is a true 
maximum of a solid curve [Eq. (101)] and not a kink [Eq. (102)3. 

A more general consideration, including the more complicated 
compounds (43/AnB m and the strictly regular solution model (44) (instead of 
an ideal one), leads to similar results. 

A further development of these ideas has been presented recently by 
Krichevskii eta]. (45'461 They considered the influence of a third component 
on the thermodynamics of the three-phase equilibrium among a solid phase 
(a compound of AB, ,  a solvent B with a dissolved substance A), a liquid 
phase (a solution saturated with this component and extremely dilute with 
respect to component C), and a gas phase (the vapor of the pure solvent 
B, as the components A and C are assumed to be nonvolatile). 

For  a nondissociated system the change of the fugacity of the solvent 
B (which for the low saturated vapor pressure coincides with the partial 
pressure) due to the addition of a small amount of C is given by (47~ 

ln[PB,(ABc) /PB,(AB)]  = --nc/nB ; dP = O; dT= 0 (103) 

822/58/3~4 22 
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where PB(AB) and PB(ABC) a r e  the respective partial pressures of the solvent 
in binary and ternary solutions at the same temperature; n is the number 
of moles of the components. 

Let us allow now the chemical reaction (dissociation) in the solution 

A B m ~ A  + m B  (104) 

The chemical potential of the compound AB m in solution which coexists 
with a solid is fixed and depends only on the temperature. The fugacity ? 
of the nonvolative component A can be replaced by the activity a. There- 
fore, the law of mass action for the reaction (104) can be written as 

aA7~ = K  (105) 

or in differential form 

d( lnaA)+md( ln?B)=O;  d P = 0 ;  d T = O  (106) 

Combining the last equation with the Gibbs-Duhem equation (4) 

r/A d(ln aA) +nB d(ln 7B) + nc d(ln ac) = 0; dP = 0; d T =  0 (107) 

one obtains 

d(ln 7B) = - n c  d(ln ac)/(n B - tunA) (108) 

Assuming that the solution is very dilute with respect to C, one can 
replace the activity ac by the number of moles nc. 

After integration of Eq. (108), we have 

In ?B'(ABc) = in PB(ABC)_ nc (109) 
o o 

])B, (AB) PB(AB) nB -- mnA 

For the chemical reaction of the form (104) the difference nB--mnA 
remains constant. Consequently, we replace nB and rt A in (109) by the total 
number of moles of the components n ~ and n ~ in both liquid and solid 
phases. 

At m = 0 ,  Eq. (109) is reduced to Eq. (103). At the melting point in 
Fig. 3 (which was drawn for m = 1) where two branches of the solubility 
curves meet, the compositions of the solid and liquid phases are equal, and 
the denominator of Eq. (109) is reduced to zero. Addition of component C 
to solutions must, on the left branch (nB > tunA) decrease, and on the right 
branch (nB < mnA)  increase, the value of Pt~(ABC). 

The immediate vicinity of the melting point is of special interest. On 
approaching the melting point along the left branch, the right-hand side of 
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Eq. (109) tends to -o% and on approaching along the right branch, it 
tends to + oe. Then, P~(A~C) must correspondingly decrease to zero and 
increase to infinity. Both of these values (0 and o9) are physically 
impossible. In fact, PB,(ABC) on the left branch may not be less than the 
dissociation pressure of the compound in solution and on the right branch 
PB,(A~C~ cannot exceed the saturated vapor pressure of the pure solvent. 

I consider in Section 6 some of the experimental verifications of these 
predictions for nonelectrolyte (45) and electrolyte (46) systems. 

6. POSSIBLE E X P E R I M E N T A L  V E R I F I C A T I O N  

6.1. Chemica l  Anomal ies  

Although there are no systematic experimental results concerning the 
mutual influence of the chemical reactions and the critical phenomena, I 
have found some indications of the critical slowing down reported as early 
as 1931.(48) A very rapid decrease of the reaction velocity was found there 
near the critical point of hydrogen chloride and propylene. 

In 1946 Toriumi et  al. (49) reported increases in the rate of oxidation of 
NH3 and of SO2 near their respective critical points. 

The distinguished Russian physical chemist I. R Krichevskii in his 
pioneering experiments studied the influence of the critical environment on 
the chemical reactions. He studied (16) the dissociation-recombination 
equilibria N204~2NO2 in dilute solution in CO2 in proximity to the 
critical point of the mixture (which for this dilute solution is very close to 
that of pure CO2). A strong increase was found in the concentrations of 
NO2 when the temperature was lowered toward the critical temperature. 
Two other experiments performed by Krichevskii and his collaborators are 
concerned with chemical kinetics. They irradiated pure C12 in one case (5~ 
and 12 in CO2 in the other case (51) with light. In both cases the irradiation 
results in the dissociation of the diatomic molecules into atoms. Under 
normal conditions, when the irradiation is stopped, a rapid recombination 
restores the chemical equilibrium. When the experiment was conducted 
under critical conditions (near the liquid-gas critical point of the pure C12 
or the binary COa-I2 mixture, respectively) the recombination rate 
according to Krichevskii is dramatically slowed down. Although 
Krichevskii's interpretation of his experiments was wrong (see below), he 
should be given credit for his attention to the issues. 

To make the picture complete, one should mention the experiments of 
Snyder and Eckert, (52) where two types of reactions were run in a binary 
mixture (such as water-triethylamine) that served as a solvent. The reac- 
tion rates were measured near the critical point of phase separation. In one 
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case the reaction rate somewhat decreased (by 25 %) compared to non- 
critical conductions, but in the other case it increased. 

Krichevskii's experiments gave the initial impetus for our interest in 
chemistry in the "critical wonderland," and we tried (8'14) to explain his 
experiments. It turns out, however, that the situation is more complicated 
than expected. First, the equilibrium experiments (16) were performed at 
constant volume rather than at constant pressure as considered in 
Section 3.2. Second, Krichevskii's photoexcitation experiments (5~ probe 
fluctuations of vanishing wavenumber rather than those located in the 
region KH-Kc discused in Section 2.1. According to refs. 13 and 15, in both 
these cases the singularities do exist, but they are governed by the weak 
rather than by the strong critical index. Moreover, Morrison insists (17) on 
a different interpretation of Krichevskii's equilibrium results, (16) considering 
them as due to critical opalescence rather than a result of the critical 
enhancement in the extent of reaction. 

Recently, Greer (53) repeated the experiment of Krichevskii (5~ and 
found that for the C12 ~ 2C1 reaction the recombination time near the criti- 
cal point is still very fast, and the slowing down, if any, can be checked by 
the use of picosecond spectroscopy. The latter result does not contradict 
the theoretical prediction described in Section 3.1 about the absence of a 
strong singularity in the chemical relaxation rate of spatially homogeneous 
fluctuations. Greer concludes ~53~ that the long relaxation times obtained by 
Krichevskii (5~ are connected with thermal effects and not with the slowing 
down of the reaction rate. 

Recently Tveekrem et al. (541 studied the dimerization of NO 2 
(2NOz ~ N204) near the liquid-liquid critical point of the binary mixture 
perfluoromethylohexabe+carbon tetrachloride. They observed a small 
decrease in dimerization near Tc (of about 4%) decribed by the weak 
critical index. In another article Greer (55~ suggested measuring a one- 
component system near its liquid-gas critical point, in which the reaction 
is an intramolecular transformation, such as the boat-chair conformation 
transformation in cyclohexane. According to Section 3, one expects a 
strong effect in this case. 

6.2. Critical Points and Critical Indices in Reactive Mix tures  

Due to the additional constraint (the law of mass action), a chemical 
reaction decreases the number of thermodynamic degrees of freedom. For 
example, a binary mixture with a chemical reaction behaves like a one- 
component system, i.e., has an isolated critical point instead of a line of 
critical points. To my knowledge, even this basic statement has not been 
proved experimentally. 
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Reactive binary mixtures having a miscibility gap are the simplest 
objects for an experimental test of the theoretical predictions. In order to 
have a second instability analogous to the liquid-liquid instability in a 
reactive mixture, the liquid-gas critical curves in the P - T  or P - X  planes for 
this mixture (without chemical reaction) must differ significantly from 
straight lines. (28) The comparative values of the heat of reaction H and the 
heat of mixing J give another indication of the existence of both a chemical 
reaction and a miscibility gap. This is the case when H is of order J (the 
model consideration (28~ gives fH[ < 4J). The cis-trans mixtures might show 
such behavior. For example, for the mixture cis-trans dichlorethylene, 
J ~  155 cal/mole (56) and H ~  500 cal/mole. (57) Once an appropriate system 
is chosen, one expects to find different critical indices for, say, specific heat 
measurements with and without a chemical reaction, i.e., when the inter- 
conversion of the isomers (the chemical reaction) is stimulated by adding 
a catalyst or by photochemistry. 

It should be noted that miscibility and isomerization contradict one 
another. In fact, the isomers have to be similar enough to allow inter- 
conversion. On the other hand, miscibility requires substantial differences 
between isomers. It is likely, therefore, that such an experiment can be 
performed more easily in a many-component system. 

6.3. Attenuation of Sound in Reactive Systems 

Only sound experiments have been performed so far for revealing the 
critical contribution to the transport coefficients in reactive systems. Sound 
attenuation and the velocity of ultrasound have been measured (58) in the 
homogeneous solution of isobutyric acid and water near the liquid-liquid 
critical point. All the parameters were known from independent 
experiments. However, it turned out that one cannot describe the 
experimental data by the use of these parameters unless the additional 
mechanism of absorption is taken into account. The latter is caused by a 
chemical reaction whose rate has an anomaly in the critical point described 
by the critical index in the interval 1.0-1.25, while the theory (Section 4) 
predicts the weak critical index for this case. Therefore, this experiment 
needs an additional refinement. 

6.4. Phase Separation in Systems with Dissociation Reactions 

Order-disorder phase transitions and critical phenomena in electri- 
cally neutral systems originate from the competition between the repulsive 
and attractive forces. When charged particles appear due to the 
dissociation-recombination reaction, they give rise to new attractive forces 
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(the Coulomb interaction between ions, which is, on average, an attractive 
interaction) and repulsive forces (say, the hard-core interaction at short 
distances). These new competing forces result in an additional first-order 
phase transition in a three-component plasma with a critical point. The 
coexisting phases for a new phase transition following from the chemical 
reaction are determined by Eqs. (57) and (59) of Section 5.2. It has been 
proposed (59'21'34/ that these arguments can be used for an explanation of 
some experiments in metallic vapors at high pressures and in the metal- 
ammonia solutions. 

Metal-ammonia solutions provide a type of system where an increase 
of a (small) concentration of metal results in a huge increase of electro- 
conductivity manifesting a transition from nonmetallic to metallic 
conductivity. Metallic vapors are another example of the latter behavior. 
The continuous decrease in the density of metals with heating above the 
critical temperature causes transition into the nonmetallic state and a 
significant decrease of the electrical conductivity. 

The most common and general explanation of the nature of this tran- 
sition has been given by Mott, (6~ who considered the following elegant 
physical argument. Mott argued that changing the number density n of 
charges interacting with the screened Coulomb interaction eliminates the 
bound states when aBn-~/3~0.25, and hence the system will become 
metallic. (Here, aB is the Bohr radius in the medium.) Despite the 
generality of the Mott criterion, not all metal-nonmetal transitions can be 
thus explained. Sometimes the transitions take place at densities lower than 
those predicted by the Mott  criterion(6~/; in other systems there is more 
than one transition. Let us consider two examples in more detail. 

The liquid-gas critical point of mercury occurs at a density pc= 
5.77 g cm-3 (Pc = 1670 bar; T~. = 1750 K). Upon expansion, a metal-non- 
metal transition takes place at p ~ 9  g cm -3. It is generally accepted (see, 
however, ref. 62) that the latter transition is adequately explained by the 
Mott criterion. However, a dielectric anomaly has recently been found (63/ 
at a density O ~ 3 g cm-3. The latter was interpreted as a transition from 
a weakly ionized mercury plasma to a new inhomogeneous phase with 
charged droplets. This transition, probably of first order, occurs at densities 
much lower than those in the Mott theory, and therefore requires further 
explanation. 

The second example is even more conclusive. The heat capacity of 
sodium-ammonia solution has been measuired for three different molar 
fractions of metal (x =0.045, 0.0462, and 0.0631). (64/ Starting at low tem- 
peratures, the heat capacity shows a jump across the liquid-gas separation 
curve of this mixture. However, upon further heating, two more jumps in 
the heat capacity occur (64/ at two distinct temperatures above the critical 
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one. The changes in slope of the electromotive force take place at the same 
temperatures, (65~ providing additional evidence for the first-order phase 
transition above the liquid-gas critical point. Experimental observation of 
this new phase transition is very difficult because of the very small density 
differences between two phases and the existence of slow diffusion pro- 
cesses. The former calls for high homogeneity of the temperature, and the 
latter results in very long relaxation times. I believe that the above-men- 
tioned and other experimental problems prevent the observation of this 
new thermodynamic phase transitions for other systems, while its existence 
seems to be obvious for a broad class of systems. In addition to the metal 
vapors and the metal-ammonia solutions, one can mention molten salts, 
weak electrolytes, solutions of metals in their salts, electron-hole plasmas 
in optically excited semiconductors, etc. 

One has to assume very detailed models in order to explain a new 
phase transition in metal-ammonia solutions. Therefore, I restrict myself to 
an application of Eqs. (57) and (59) for an explanation of the dielectric 
anomaly in liquid mercury. I adopt the following numerical procedure. For 
a given I and e, one starts from some x' which gives x" and two equations 
for T and P. The ionization potential is taken to be 10.43 eV, which is the 
value for the isolated mercury atom. The choice of the dielectric constant 

is much more complicated, and I choose the two reasonable values e = 1.7 
and e = 1.8. Assuming values for I and e, one can proceed now to the 
calculation of the x', x", P, and T for the two coexisting phases using Eqs. 
(57) and (59). The locus of the temperature and pressure of our phase 
transition is very close (34~ to the locus of the onset of the dielectric anomaly 
observed in ref. 63. l do not claim to have a quantitative explanation of the 
experimental results, due to the specific model used and the uncertainty of 
the value of the dielectric constant in two coexisting phases. 

6.5. Decay of Metastab le  States in Reactive Systems 

I do not know of any experiments of this kind. The cis-trans isomeric 
systems seem to be appropriate substances where the chemical transforma- 
tions can be induced by a catalyst or by photochemical methods. 

6.6. Criterion for  Upper (Lower )  Crit ical Point in Reactive 
M ixtures 

~[ do not know of any experimental study of the influence of a chemical 
reaction on the critical point. A possible experimental strategy is to 
measure the equilibrium line near the critical point with and without a 
small amount  of catalyst. Then, if the criterion (88) or (89) is satisfied, 
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heating will bring the reactive mixture to the critical point, in contrast to 
cooling for the equivalent nonreactive mixture. 

6.7. Azeotropy in Reactive Mixtures  

In contrast to the previous two subjects, the experimental use of 
chemical reactions for the distillation process goes back to the 1920s. All 
the usual methods of separation do not work for mixtures of components 
with boiling temperatures close to each other, such as isomers~ The idea of 
reactive distillation is to add a catalyst (entrainer) which reacts preferen- 
tially with one of the isomers. Then the second isomer will be taken off as 
distillate, and the first isomer, a catalyst, and reaction products will remain. 
The process can be repeated until the full separation of isomers. There are 
dozens of examples (66'671 widely used in many chemical processes. 

6.8. The Solubi l i ty  Curve of Dissociable Solute 

The classical examples of the influence of dissociation in the liquid 
state on the curvature of the solubility curve near the melting point are 
hydrated salts such as sodium thiosulfate Na2SO 4 �9 5H20,  sodium acetate 
N a C 2 H 3 0 2 . 3 H 2 0 ,  and the best known example, calcium chloride 
hexahydrate CaC12-6H20. This salt may dissociate in the liquid according 
to CaC12-6H20 = C a C l z + 6 H 2 0 ,  which flattens the solubility curve in 
Fig. 3. The influence of a third component on the above phenomenaon has 
been studied experimentally by Krichevskii eta/. (45'46) They added small 
amounts of sucrose, fructose, and urea to saturated acqeous solution of 
crystal hydrates of Na2SO4.10H2 O and Mg(NO3)3 .6H20 .  The data 
obtained for all systems were in very good agreement with Eq. (109). 
The results of measurements of ln(PB(ABc)/PB(AB)) as a function of 
nc/(nB--mnA) lay on a single straight line havinig a slope - -1 .  (45) 

Moreover, the information relating to partial pressures was used to 
calculate m in the dissociation equation (104). The results, m = 10.1 +0.1 
for Na2SO4- 10H20 and m = 5.9 _+0.1 for Mg(NO3) a -6H20,  support the 
use of this method of determining m for cases where it is difficult to analyze 
the basic phase directly, say, due to high solution viscosity. 

The interesting task of studying the immediate vicinity of the melting 
point is still awaiting experimental verification. 

Additional experiments have been performed for the cases when the 
third component is a strong electrolyte [NaC1, KC1, Mg(NO3)2]. Experi- 
ments again supported the theoretical predictions. (461 

We are looking forward to new experiments relating to the peculiar 
chemical behavior near the critical point. 
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